Preliminary Analysis and Simulations of July 23rd Extended Anvil Case

Goal - To understand the evolution/lifecycle of cirrus anvils

- Role of mesoscale processes
 - Deep convection microphysical input/outflow
 - Ambient environmental conditions
 - Convection-induced circulations
- Role of cloud-scale processes
 - Particle sedimentation
 - Cloud-scale circulations
 - New particle generation/growth?
 - Radiative processes
- => Impact on Radiative and UT Humidity fields

July 23rd Extended Anvil Case

```
Approach - Conduct high-resolution simulations of cirrus lifecycle
Tool - Cloud-resolving model w/ resolved ice microphysics, R.-F. Lin
    (2-D model with 100-m resolution and bin microphysics/aerosol)
Validating Data - Cloud Ice Field
         CRS (G.Heymsfield, L.Li, Z.Wang) .....no COSSIR
         In-situ (A.Heymsfield and the Cloud Probers)
Validating Data - Cloud Dynamics
         In-situ (B.Demoz, P.Bui, M.Poellot)
Validating Data - Cloud Optical Properties
         CPL (M.McGill, D.Hlavka, W.Hart)
         PDL (K.Sassen)
         MAS/MODIS (S.Platnick, M.King)
         GOES (P.Minnis et al)
```

July 23rd Extended Anvil Case

Initializing Data

Cloud Ice Field

CRS and EDOP (G.Heymsfield, L.Li, Z.Wang, L.Tian) MM5 (R.F.-Lin, Y.Wang, A.Lare) In-situ (A.Heymsfield and the Cloud Probers)

Environmental Data

NWS, CFU, PARCL, and ER-2 soundings (J.Halverson, L.Miloshevich, B.Demoz, A.Lare)

MM5 and NWS Eta (R.-F.Lin, Y.Wang, A.Lare)

In-situ (B.Demoz, P.Bui, M.Poellot)

Meteorology/NEXRAD (J.Halverson, T.Rickenbach, A.Lare)

July 23rd: NEXRAD, 1700-2000 UTC

July 23rd: NEXRAD, 2000-2300 UTC

Starr/GSFC

2300 UTC

July 23rd: CPL, CRS, NEXRAD and EDOP: 20 UTC

July 23rd: CPL, CRS, NEXRAD and EDOP: 21 UTC

July 23rd: CPL, CRS, NEXRAD and EDOP: 22 UTC

July 23rd: CPL, CRS, NEXRAD and EDOP: 23 UTC

July 23rd: NEXRAD, 2000-2300 UTC

Starr/GSFC

2300 UTC

July 23rd: MM5 Precipitation

 $\frac{\text{BARB VECTORS: FULL BARB} = 5 \text{ m s}^{-1}}{\text{Model info: V3.5.0 No Cumulus Blackadar GSFC Graup}} = 2 \text{ km.} \quad 32 \text{ levels.}$

Starr/GSFC

2330 UTC

July 23rd: MM5 Upper Air with Cloud Ice

July 23rd: MM5 30-210° Cross-Section, 2300 UTC

July 23rd: MM5 30-210° Cross-Section, 2300 UTC

Starr/GSFC

July 23rd: Mobile and PARCL Soundings

July 23rd: CRM Cloud Ice Field

July 23rd: Cloud Water from CRS-CPL-EDOP

July 23rd: Cloud Optical Depth from CPL

Next Steps

- Integrate Cloud Water information to estimate Initial Conditions and Time/Space-Dependent Evolution, specifically IWC(x,t) and N_i(r,x,t)
- Complete Analysis of MM5, Eta, and Sonde data to Characterize Environment
- Iterate 2-D Simulations to Achieve "Best" Result =>Microphysical Consistency
- Compare CRM Cloud-scale Dynamics to in-situ Observations (WB-57, Citation)
- Compare CRM Cloud Optical Properties to Observations (CPL, MAS, GOES)
- Evaluate Importance of Mesoscale Circulations (Buoyancy Waves) using CRM
- More Cases.....

July 28th Case Study

July 29th Case Study

July 16th Case Study